
Processing MPI Datatypes Outside MPI

Robert Ross1, Robert Latham1, William Gropp2,
Ewing Lusk1, and Rajeev Thakur1

1 Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{rross|robl|lusk|thakur}@mcs.anl.gov

2 Computer Science Department, University of Illinois
at Urbana-Champaign Urbana, IL 61801, USA

wgropp@illinois.edu

Abstract. The MPI datatype functionality provides a powerful tool for
describing structured memory and file regions in parallel applications,
enabling noncontiguous data to be operated on by MPI communication
and I/O routines. However, no facilities are provided by the MPI stan-
dard to allow users to efficiently manipulate MPI datatypes in their own
codes.

We present MPITypes, an open source, portable library that enables
the construction of efficient MPI datatype processing routines outside
the MPI implementation. MPITypes enables programmers who are not
MPI implementors to create efficient datatype processing routines. We
show the use of MPITypes in three examples: copying data between user
buffers and a “pack” buffer, encoding of data in a portable format, and
transpacking. Our experimental evaluation shows that the implementa-
tion achieves rates comparable to existing MPI implementations.

1 Introduction

An overwhelming majority of HPC codes rely on the MPI message passing in-
terface standard. Because MPI is understood so well by application teams and
is available on virtually all platforms, additional software has been developed
that builds on MPI capabilities and concepts, such as ROMIO [1] and Parallel
netCDF [2]. Rich datatype description capabilities are an integral part of the
MPI standard and are used in all aspects of MPI, from point-to-point and col-
lective communication to I/O and remote memory access. The MPI datatype
facilities make it possible for users to conveniently describe complex, noncon-
tiguous, structured data and operate on this data using a variety of MPI calls
in an efficient manner.

Unfortunately, there is a distinct lack of functionality in the MPI standard
to allow external libraries to efficiently process MPI datatypes, and as a result
it is difficult to build libraries that use the MPI descriptive capabilities beyond
simply passing these descriptions directly to MPI calls. In this paper we describe
MPITypes, a portable, open source library for manipulating MPI datatypes in

2 Authors Suppressed Due to Excessive Length

libraries and applications. Adapted from the datatype processing component of
the MPICH2 implementation [3], the MPITypes library includes a set of com-
monly desired operations, such as copying structured data between a user buffer
and a contiguous buffer, or generating lists of offsets and lengths described by a
datatype (flattening). Additionally, MPITypes provides a framework for devel-
oping more complex, case-specific datatype operations for use in libraries and
applications. We describe the capabilities of MPITypes through a set of use cases,
including copying data described with an MPI datatype, data format conversion
as performed in Parallel netCDF [2], and an implementation of transpacking [4].

2 Background

It is natural for HPC libraries to take advantage of MPI in a variety of ways.
The ROMIO MPI-IO library [1] relies heavily on MPI point-to-point and collec-
tive communication to maintain portability across MPI implementations. The
Parallel netCDF (PnetCDF) library [2], a high-level I/O library that provides
parallel access semantics to data stored in the netCDF data format [5], likewise
relies on MPI File operations to maintain portability across a variety of serial
and parallel file systems. In both cases, these libraries rely on MPI datatypes. In
the case of PnetCDF, these are used to describe user data structures in memory,
while in the case of ROMIO, these types describe both regions in memory and
in files.

When libraries such as these incorporate the use of MPI datatypes in their
interfaces, it is often necessary to process these datatypes in various ways. For
example, the ROMIO library must break datatypes apart in order to determine
what regions of a file should be accessed and where data resides in memory.
In the PnetCDF case, data in memory described by a datatype needs to be
encoded in a portable format prior to data movement to file, or decoded prior
to placement in the user’s buffers. Unfortunately, the MPI standard provides
virtually no support for processing of datatypes outside the MPI library. Even
the MPI Pack routine, which näıvely appears to provide the functionality needed
to move data into a contiguous buffer, cannot be used by external libraries [6]:

The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional
information, such as a description of the sender architecture (to be used
for type conversion, in a heterogeneous environment).

In other words, the data placed in a buffer by MPI Pack cannot reliably be
interpreted by an external application.

Libraries building on MPI have addressed this deficiency in different ways. In
ROMIO, facilities were implemented to “flatten” types into a list of offset-length
pairs, a limiting factor for some access patterns [7]. PnetCDF processes noncon-
tiguous datatypes by first calling MPI Pack to put the data into a contiguous
buffer in this undefined format and than using MPI Unpack with a contiguous
datatype to put the data in a separate contiguous buffer. This data is then

Processing MPI Datatypes Outside MPI 3

encoded in the appropriate format and written to file. This is obviously very in-
efficient. Libraries such as these would benefit greatly from a library of routines
that allow efficient processing of MPI datatypes.

Efficiently processing MPI datatypes is an understood problem [8, 3]; how-
ever, to date these capabilities have not been made available in a useful form to
developers building applications or libraries outside the context of MPI imple-
mentations. MPITypes fills this gap.

3 The MPITypes library

MPITypes is a portable library for efficiently processing MPI datatypes in HPC
libraries and applications that rely on MPI. MPITypes is based on the MPICH2
datatype processing functionality [3]. It relies on the dataloop representation
described in our previous work for efficient processing and operates in the same
non-recursive manner in order to maximize performance. MPITypes provides
two capabilities: a set of datatype operators that provide functionality commonly
needed by libraries processing MPI datatypes, and a set of functions that form
a toolkit for building more specialized type processing.

3.1 Basic MPITypes functionality

Figure 1 summarizes the MPITypes interface. The first five of these functions
provide a basic interface for two of the most common operations on datatypes,
packing/unpacking and flattening. The init function is responsible for gen-
erating the dataloop representation of the type used internally for processing,
building this from the data available via the MPI datatype envelope and con-
tents calls. init also allocates a keyval with MPI Type create keyval on initial
execution and stores data as an attribute on the datatype to be processed. The
delete callback associated with the keyval implicitly frees these internal data
structures when the last reference to the type is freed, eliminating the need for
an explicit free operation.

The next three functions perform useful operations on MPI datatypes. memcpy
is the datatype equivalent of the UNIX function: it copies between a memory re-
gion described by an MPI {buffer, count, type} tuple and a contiguous memory
region. flatten generates lists of displacements and block lengths that spec-
ify the regions of memory described by the datatype tuple. blockct provides a
count of the distinct contiguous regions described by the datatype tuple. All of
these functions take start and end offsets, in bytes, that provide the ability to
perform partial processing, for example if limited memory is available.

These functions alone would greatly simplify the ROMIO implementation by
eliminating the need for an internal flattening functionality and for keeping track
of flattened representations. In the case of PnetCDF, the memcpy function pro-
vides a convenient way to move data between the user’s buffer and a contiguous
encode/decode buffer, eliminating the need for the current MPI Pack/MPI Unpack
approach. However, in both cases more task-specific datatype processing would
provide additional benefits.

4 Authors Suppressed Due to Excessive Length

/* Basic Functions (MPIT_Type) */
int MPIT_Type_init(MPI_Datatype type , int flag);

int MPIT_Type_memcpy(void *typebuf , int count , MPI_Datatype type ,
void *streambuf , int direction , MPI_Aint start , MPI_Aint *end);

int MPIT_Type_flatten(void *typebuf , int count , MPI_Datatype type ,
MPI_Aint start , MPI_Aint *end , MPI_Aint *disps , int *blocklens ,
int *count);

int MPIT_Type_blockct(int count , MPI_Datatype type , MPI_Aint start ,
MPI_Aint *end , MPI_Aint *blockct);

/* Toolkit Functions (MPIT_Segment) */
MPIT_Segment *MPIT_Segment_alloc ();

int MPIT_Segment_init(void *buf , int count , MPI_Datatype type , int flag);

int MPIT_Segment_free(MPIT_Segment *seg);

int MPIT_Segment_manipulate(MPIT_Segment *seg , MPI_Aint start , MPI_Aint *end ,
int (* contigfn) (...), int (* vectorfn) (...), int (* blkidxfn) (...),
int (* indexfn) (...), MPI_Aint (* sizefn) (MPI_Datatype el_type),
void *pieceparams);

Fig. 1. The functions in MPITypes. The MPI Type functions provide a basic set of
operators on MPI datatypes, while the MPI Segment functions serve as a toolkit for
implementing more advanced functionality.

3.2 MPITypes as a toolkit

The real power of MPITypes is in its use as a toolkit for building more complex,
task-specific datatype processing operations. The memcpy, flatten, and blockct
functions are all written in terms of the second set of functions in Figure 1.
To explain the use of these functions, we first examine the implementation of
MPIT Type memcpy (Figure 2).

There are three main components to the memcpy implementation. First is a
structure, MPIT memcpy params, that holds data specific to the processing we
wish to perform (i.e. buffer locations and a direction for copying). For other
types of processing different data might be needed, such as arrays to hold offsets
and lengths in the case of flattening.

Second is the memcpy function itself. This function initializes the task-specific
data structure and calls segment functions to accomplish the datatype process-
ing. A segment is a structure that holds state about the processing of an MPI
datatype. This structure is also used to optimize partial processing of datatypes
by maintaining the current position in the datatype. The segment functions are
provided as part of MPITypes.

Segment manipulate drives datatype processing. Specifically, this function
walks the dataloop representation of the datatype, tracking the current position
in the datatype and storing this information in the segment. When it encounters
a “leaf” node in the dataloop tree, it executes one of the third component, the
leaf functions. One of these, MPIT Leaf contig memcpy, is shown.

Processing MPI Datatypes Outside MPI 5

/* MPIT_Type_memcpy - Copies data between a region described by an MPI
(buf , count , type) tuple and a contiguous data buffer.

Start and end refer to starting and ending byte locations in the type
map defined by the user datatype. Specifically , end refers to the
byte offset just past the last to be processed (e.g. to process
bytes [0..5] , start = 0 and end = 6).

*/

typedef struct MPIT_memcpy_params_s {
int direction;
char *packbuf;
char *userbuf;

} MPIT_memcpy_params;

int MPIT_Type_memcpy(void *typebuf , int count , MPI_Datatype type ,
void *streambuf , int direction , MPI_Aint start , MPI_Aint *end)

{
int mpi_errno;
MPIT_Segment *segp;
MPIT_memcpy_params params;

segp = MPIT_Segment_alloc ();
MPIT_Segment_init(NULL , count , type , segp , 0);

params.userbuf = typebuf;
params.packbuf = packbuf;
params.direction = direction;

MPIT_Segment_manipulate(segp , start , end , MPIT_Leaf_contig_memcpy ,
MPIT_Leaf_vector_memcpy , MPIT_Leaf_blkidx_memcpy ,
MPIT_Leaf_index_memcpy , NULL , ¶ms);

MPIT_Segment_free(segp);
return MPI_SUCCESS;

}

int MPIT_Leaf_contig_memcpy(MPI_Aint *blocks_p , MPI_Type el_type ,
MPI_Aint dtype_pos , void *unused , void *v_paramp)

{
MPI_Aint el_size;
MPI_Aint size;
MPIT_memcpy_params *paramp = v_paramp;

MPI_Type_size(el_type , &el_size);
size = *blocks_p * el_size;

if (paramp ->direction == MPIT_MEMCPY_TO_USERBUF)
memcpy(paramp ->userbuf + dtype_pos , paramp ->packbuf , size);

else
memcpy(paramp ->packbuf , paramp ->userbuf + dtype_pos , size);

paramp ->packbuf += size;
return 0;

}

Fig. 2. Excerpts from the implementation of MPIT Type memcpy. This implementation
allows copying of sub-regions for pipelining or memory management purposes. Only
contiguous leaf function is shown.

6 Authors Suppressed Due to Excessive Length

The four leaf functions correspond to the four possible dataloop leaf types:
contiguous, vector, block indexed, and indexed. Along with the relative position
tracked by the manipulate function, the data in the leaf node specifies the map-
ping of a specific set of user buffer locations to types in the MPI typemap. It is
the task of the leaf function to perform whatever operation is desired for these
regions.

In MPIT Leaf contig memcpy, the function copies data for a single contiguous
region in both the user buffer and the contiguous buffer. The MPIT memcpy params
tracks the initial user buffer pointer (userbuf) and the next contiguous buffer
offset (packbuf), while the current datatype location, relative to the initial user
buffer pointer, is provided by the manipulate function (dtype pos).

Segment manipulate understands how to use a contiguous leaf function to
process any other type of leaf function, so a simple implementation of memcpy
would only include our contiguous leaf function. However, in cases where it is
expected that the overhead of processing the type will dominate, such as when
simply copying data, implementing support for the other three types of leaf nodes
provides a substantial boost in performance. The MPITypes implementation of
memcpy includes all four leaf processing functions.

4 Case studies in datatype processing

MPITypes provides a great deal of convenience for users who wish to work with
MPI datatypes, but if it does not perform efficiently, then it has little practical
value. In this section we evaluate the MPITypes framework. First, we compare
the performance of MPITypes when copying data to that of MPI Pack/MPI Unpack
and manual copying of data. Next, we examine the cost of an MPITypes-based
PnetCDF data coding implementation as compared to simply copying data and
to the existing PnetCDF approach, for an example data type. Finally we ex-
amine the performance of a MPITypes-based transpacking implementation as
compared to the näıve pack/unpack approach.

All tests were performed on the “breadboard” system at Argonne National
Laboratory. The node used for testing is an 8-core, 2.66 GHz Intel Xeon system
with 16 Gbytes of main memory running Linux 2.6.27. Tests with MPICH2 use
version 1.0.8p1, compiled with “--enable-fast=O3”. Tests with OpenMPI use
version 1.3.1, compiled with “CFLAGS=-O3 --disable-heterogeneous
--enable-shared=no --enable-static --with-mpi-param-check=no”.

4.1 Moving data between user buffers and contiguous buffers

We have modified the synthetic tests used in [3] to compare the MPITypes im-
plementation of MPIT Type memcpy with the MPI Pack and MPI Unpack routines
and hand-coded routines that manually pack and unpack data. These tests cover
a wide variety of possible user types, from simple strided patterns to complex,
nested strides and types with no apparent regularity.

Processing MPI Datatypes Outside MPI 7

Table 1. Comparing MPI Pack/MPI Unpack, MPIT Type memcpy, and manual copying.

Test Element MPICH2 OpenMPI MPITypes Manual Size Extent
Type (Mbytes/sec) (MB) (MB)

Contig float 4578.49 4561.09 4579.84 2977.98 4.00 4.00
Contig double 4152.07 4157.69 4149.13 2650.81 8.00 8.00
Vector float 1788.85 1088.01 1789.37 1791.59 4.00 8.00
Vector double 1776.81 1680.23 1777.04 1777.60 8.00 16.00

Indexed float 803.49 632.32 829.75 1514.94 2.00 4.00
Indexed double 1120.59 967.69 1123.97 1575.41 4.00 8.00

XY Face float 18014.16 15700.85 17962.98 9630.47 0.25 0.25
XY Face double 17564.43 18143.63 17520.11 16423.59 0.25 63.75
XZ Face float 3205.28 3271.29 3190.69 3161.28 0.25 63.99
XZ Face double 4004.26 4346.81 3975.23 3942.41 0.50 0.50
YZ Face float 145.32 93.08 145.32 143.68 0.50 127.50
YZ Face double 153.89 154.19 153.88 153.96 0.50 127.99

Each test begins by allocating memory, initializing the data region, and creat-
ing a MPI type describing the region. Next, MPIT Type init is called to generate
the dataloop representation used by MPITypes and store it as an attribute on
the type. Next, a set of iterations are performed using MPI Pack and MPI Unpack
in order to get a rough estimate of the time of runs. Using this data, we then cal-
culate a number of iterations to time and execute those iterations. The process
is repeated for the MPITypes approach, then for manual packing and unpacking
routines (hand-coded loops). Table 1 summarizes the results of this testing.

The Contig test operates on contiguous data using MPI FLOAT and MPI DOUBLE
datatypes. A contiguous datatype of 1,048,576 elements is created, and a count
of 1 is used. The Vector tests operate on a vector of 1,048,576 basic types with
a stride of 2 types (i.e. accessing every other type). A count of 1 is used when
calling pack/unpack routines. MPITypes performance tracks MPICH2 in these
tests, and in all cases performance is much higher than the hand-coded loop.
OpenMPI performs slightly more slowly for the vector type, indicating room for
improvement in this specific case.

The Indexed set of tests use an indexed type with a fixed, regular pattern
with multiple strides. Every block in the indexed type consists of a single element
(of type MPI FLOAT or MPI DOUBLE, depending on the particular test run). There
are 1,048,576 such blocks in the type. In these tests we see higher performance
for the manual approach, because our manual data movement implementation
takes advantage of knowledge of these two strides, while this information is not
recognized by the MPI implementations or MPITypes. Performance is similar
for the two MPI implementations and MPITypes in these tests.

The 3D Face tests pull entire faces off a 3D cube of elements, described in
Appendix E of [9]). Element types are varied between MPI FLOAT and MPI DOUBLE
types. The 3D cube is 256 elements on a side. Performance is virtually identical
for the MPI implementations, MPITypes, and the manual copying in these tests,
with the exception of the XY Face results for hand-coded loop. Based on our
testing, we believe this to be due to an optimized UNIX memcpy() being used
in the MPI and MPITypes cases.

8 Authors Suppressed Due to Excessive Length

4.2 Parallel netCDF data encoding and decoding

As described earlier, PnetCDF uses an inefficient approach when encoding or
decoding data for a noncontiguous user buffer, in order to avoid the need to
process MPI datatypes. A more interesting use of MPITypes would remove the
need for this intermediate buffer in the PnetCDF encode/decode process. There
are two components to this process: data translation and byte reordering. Data
translation occurs when the data in the user’s buffer is of a different type than
the variable in which it is to be stored. This can happen, for example, when
writing data for visualization purposes in simulations codes: data in memory
in double-precision floating points is stored in single precision format to reduce
I/O demands. If the two types are the same, format translation is not necessary.
The netCDF file format calls for big-endian data. If the system is a little-endian
machine (e.g. Intel), then byte translation must be performed. Since our test
system is an Intel system, we will perform this byte swapping.

The MPITypes memcpy implementation provides a convenient starting point
for an implementation of this PnetCDF functionality. Through experimentation,
we found that for cases where data translation is not necessary, the most efficient
approach was to use the MPITypes memcpy function unchanged to copy data into
a contiguous buffer, then perform a single pass over the buffer to swap bytes.

In the case where data translation is necessary, we constructed a new func-
tion, MPIT Type netcdf translate to perform the data translation as part of
the copy process (and to perform byte swapping when required). The type of
data being stored in netCDF is passed along in the structure of parameters to a
new set of leaf functions. In the case of encoding, the leaf functions first perform
data translation into the new buffer, then byte swap. This process is reversed
for decoding.

The availability of the “element type” in the leaf function provides critical
information for the translation process. The combination of the type of data in
the user’s buffer, available via the element type parameter, and the desired for-
mat of the data in the file, stored in the parameters passed to the leaf functions,
defines the translation to be applied. Notice that because the position in the
contiguous buffer is tracked by the leaf function, data encoding that requires a
change in the size of the data is possible; we simply increment the location by
the size of the data in the encoded format, rather than by the size of the data
in the native format.

We use the basic data structure from the Flash astrophysics application as
our test case. The Flash code is an adaptive mesh refinement application that
solves fully compressible, reactive hydrodynamic equations, developed mainly
for the study of nuclear flashes on neutron stars and white dwarfs [10]. The data
consists of some number of 3D blocks of data. Each block consists of a 8× 8× 8
block of elements surrounded by a guard cell region four elements deep on each
side. Each element consists of 24 variables, each an MPI DOUBLE. This type is
representative of the most complex types we would expect to see from most
applications.

Processing MPI Datatypes Outside MPI 9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500

T
im

e
 (

m
s
e
c
)

Block Count

PnetCDF Double ==> Double (1 Variable/Element)

PnetCDF
Translate
Memcpy

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

T
im

e
 (

m
s
e
c
)

Block Count

PnetCDF Double ==> Float

PnetCDF (4 vars)
Translate (4 vars)
PnetCDF (1 var)
Translate (1 var)

Fig. 3. Performance of PnetCDF data encode implementation, for case where data
does not need to be translated (left) and for a double-to-float translation (right).

In our tests we construct a quadruply-nested vector type that references
all local elements of one or more variables, skipping the guard cells. Figure 3
shows the results of our experiments. On the left, performance for encoding a
single variable out of n blocks of the Flash type is examined. Our new approach,
using memcpy followed by byte swapping, results in a 29% reduction in time as
compared to the original PnetCDF approach. A standard MPITypes memcpy
is shown as a reference. On the right, we examine performance for the case
where data in the user buffer in double-precision floating point is converted to
single-precision for writing into the file. We show results for extraction of both
one variable and four contiguous variables. For the case of a single variable, we
see only approximately a 9% improvement over the existing approach despite a
significant tuning effort. Performance for four adjacent variables is 31% faster
using the new approach. This indicates that for types with very small contiguous
regions, we should not expect substantial gains in directly manipulating the
data as compared to moving it into a contiguous buffer. On the other hand,
in a situation with memory constraints, the ability to operate in this manner
with some performance improvement, while simultaneously reducing the total
memory requirement, is a significant advantage.

4.3 Transpacking

Transforming data between datatype representations is a complex task that can
be an important part of certain algorithms. For example, the data sieving imple-
mentation in ROMIO requires mapping data between the user’s datatype and a
portion of the file view defined on a file [11] in order to combine noncontiguous
I/O operations into fewer, larger I/O accesses.

Data sieving can be thought of as an example of the typed copy problem [4].3

The typed copy problem consists of moving data from one datatype represen-

3 Actually data sieving requires the ability to perform partial typed copy operations
in order to limit buffer requirements.

10 Authors Suppressed Due to Excessive Length

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

vector(3,4) ==> vector(4,3)

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes)

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

contig(2,struct(1,2,3)) ==> vector(3,4)

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes)

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

vector(4,3) ==> contig(2,struct(1,2,3))

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

m
s
e
c
)

Datatype Count (times 1000)

vector(3,4,struct(3,4,5)) ==> vector(8,3,struct(4,2))

Pack/Unpack (MPICH2)
Pack/Unpack (OpenMPI)

Transpack (MPITypes)

Fig. 4. Performance of template-based transpack implementation, as compared to
MPICH2 and OpenMPI MPI Pack/MPI Unpack. Time to create the MPITypes repre-
sentation and to generate the template is included in the Transpack times.

tation to another, and a näıve solution to this problem is to simply pack and
unpack using the two datatypes. The approach of moving the data directly from
one representation to the other, without using an intermediate buffer, is known
as transpacking. An elegant solution to transpacking has been described that re-
lies on the generation of a new datatype representation that includes two offsets
for a given element rather than one [4].

Our approach recognizes that based on the prior work in this area [4], transpack-
ing is most often effective when applied on large counts of relatively small types,
and that in many cases the combination of types results in a pattern without any
expressible regularity (i.e. the resulting combination type is an indexed type).

Working under these assumptions, and assuming identical type sizes as in
the original work, we constructed a second implementation that generates a
template necessary to copy a single instance of each type (i.e. a flattened input-
output type). This construction also uses nested calls to Segment manipulate,
but only for one instance of each type. The template generated from this process
is then used to copy between multiple instances of the types. The overhead of
processing in this case is quite low.

We implemented a subset of the tests used in [4] to evaluate our prototype
transpack implementation. We did not test cases where one or both buffers
were contiguous, as these cases do not require the use of our new functionality.

Processing MPI Datatypes Outside MPI 11

Figure 4 shows the results of these tests. Our template generation approach is
able to exceed a factor of two performance gain for most cases. The cost to
generate the template for copying is small enough that the approach is viable
for even small numbers of types: the break-even point occurs before 100 type
instances for all tests.

5 Conclusions and Future Work

In this paper we have presented MPITypes, a library for processing MPI datatypes,
and building case-specific processing functions, in software using the MPI pro-
gramming model. We have shown an example of the use of MPITypes for data
copying, and we have described its application in PnetCDF as a tool for more
efficiently performing data encoding and decoding in this library. We also dis-
cussed an advanced application, transpacking, and how nested use of MPITypes
can implement this capability.

MPITypes is a portable package that relies only on standard interfaces avail-
able as part of the MPI-2 extensions, namely datatype attributes and the enve-
lope and contents calls. So far it has been tested and shown to work correctly
on top of both MPICH2 and OpenMPI, two popular implementations. We are
releasing MPITypes under an open source license in the hopes that it will en-
courage greater use of MPI datatypes as a language for describing noncontiguous
data regions in parallel applications.4

We intend to further explore the use of MPITypes in I/O libraries, including
the use of MPITypes functionality as the basis for new implementations of data
sieving and two-phase optimizations in the ROMIO MPI-IO library. Augmenting
MPITypes to include functionality for serializing and deserializing types, so that
they may be efficiently passed between processes, seems a useful enhancement
along these lines as well.

Acknowledgments

This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Dept. of Energy, under Contract DE-
AC02-06CH11357, and in part by the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of Energy award DE-FG02-
08ER25835.

References

1. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, ACM Press (May 1999) 23–32

4 Note to reviewers; we plan for the code to be available online by the time of Eu-
roPVM/MPI 2009.

12 Authors Suppressed Due to Excessive Length

2. Li, J., keng Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A high-performance
scientific I/O interface. In: Proceedings of SC2003: High Performance Networking
and Computing, Phoenix, AZ, IEEE Computer Society Press (November 2003)

3. Ross, R., Miller, N., Gropp, W.: Implementing fast and reusable datatype process-
ing. Lecture Notes in Computer Science 2840 (September 2003) 11th European
PVM/MPI Users’ Group Meeting.

4. Mir, F., Träff, J.: Constructing MPI input-output datatypes for efficient transpack-
ing. Lecture Notes in Computer Science (5205) (September 2008) 141–150 15th
European PVM/MPI Users’ Group Meeting.

5. Rew, R., Davis, G.: The unidata netCDF: Software for scientific data access. In:
Sixth International Conference on Interactive Information and Processing Systems
for Meteorology, Oceanography and Hydrology. (February 1990)

6. Message Passing Interface Forum: MPI-2: Extensions to the message-passing in-
terface (July 1997) http://www.mpi-forum.org/docs/docs.html.

7. Worringen, J., Träff, J.L., Ritzdorf, H.: Improving generic non-contiguous file ac-
cess for MPI-IO. In: Proceedings of the 10th EuroPVM/MPI Conference. (Septem-
ber 2003)

8. Träff, J., Hempel, R., Ritzdoff, H., Zimmermann, F.: Flattening on the fly: Efficient
handling of MPI derived datatypes. In Dongarra, J.J., Luque, E., Margalef, T.,
eds.: Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Number 1697 in Lecture Notes in Computer Science, Berlin, Springer-Verlag (1999)
109–116

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, Cambridge, MA (1994)

10. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNe-
ice, P., Rosner, R., Tufo, H.: FLASH: An adaptive mesh hydrodynamics code for
modelling astrophysical thermonuclear flashes. Astrophysical Journal Suppliment
131 (2000) 273

11. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In:
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Compu-
tation, IEEE Computer Society Press (February 1999)

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

